1. Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., & Arshad, H. (2018). State-of-the-art in artificial neural network applications: A survey. Heliyon, 4(11), e00938. doi:10.1016/j.heliyon.2018.e00938 [
DOI:10.1016/j.heliyon.2018.e00938]
2. Awrejcewicz, J., Krysko, A. V., Erofeev, N. P., Dobriyan, V., Barulina, M. A., & Krysko, V. A. (2018). Quantifying chaos by various computational methods. Part 1: simple [
DOI:10.20944/preprints201801.0154.v1]
3. systems. Entropy, 20(3), 175. doi:10.3390/e20030175 [
DOI:10.3390/e20030175]
4. Baghdadi, A., Aribi, Y., Fourati, R., Halouani, N., Siarry, P., & Alimi, A. M. (2019). DASPS: A Database for Anxious States based on a Psychological Stimulation. arXiv preprint arXiv:1901.02942.
5. Cervantes-De la Torre, F., González-Trejo, J. I., Real-Ramirez, C. A., & Hoyos-Reyes, L. F. (2013). Fractal dimension algorithms and their application to time series associated with natural phenomena. In Journal of Physics: Conference Series (Vol. 475, No. 1, p. 012002). IOP Publishing. doi:10.1088/1742-6596/475/1/012002 [
DOI:10.1088/1742-6596/475/1/012002]
6. Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC genomics, 21(1), 1-13. doi:10.1186/s12864-019-6413-7 [
DOI:10.1186/s12864-019-6413-7]
7. Darzi, M., Ulfatbakhsh, A., Gorgin, S., Oveisi, F., Hashemi, E. A., … & Alavi, N. A. (2016). Classification of unbalanced data in the initial diagnosis of breast diseases by methods of adabost, probabilistic neural network and K to the nearest neighbor. Iranian Journal of Breast Diseases, 9 (2), 7-18.
8. Delgado-Bonal, A., & Marshak, A. (2019). Approximate entropy and sample entropy: A comprehensive tutorial. Entropy, 21(6), 541. doi:10.3390/e21060541 [
DOI:10.3390/e21060541]
9. De Pascalis, V., Vecchio, A., & Cirillo, G. (2020). Resting anxiety increases EEG delta-beta correlation: Relationships with the Reinforcement Sensitivity Theory Personality traits. Personality and Individual Differences, 156, 109796. doi:10.1016/j.paid.2019.109796 [
DOI:10.1016/j.paid.2019.109796]
10. Giannakakis, G., Grigoriadis, D., & Tsiknakis, M. (2015). Detection of stress/anxiety state
11. from EEG features during video watching. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 6034-6037).IEEE. doi:10.1109/EMBC.2015.7319767 [
DOI:10.1109/EMBC.2015.7319767]
12. Jiao, Y., & Du, P. (2016). Performance measures in evaluating machine learning based bioinformatics predictors for classifications. Quantitative Biology, 4(4), 320-330. doi :10.1007/s40484-016-0081-2 [
DOI:10.1007/s40484-016-0081-2]
13. Katz, M. J. (1988). Fractals and the analysis of waveforms. Computers in biology and medicine, 18(3), 145-156. doi: 10.1016/0010-4825(88)90041-8 [
DOI:10.1016/0010-4825(88)90041-8]
14. Klados, M. A., Pandria, N., Athanasiou, A., & Bamidis, P. D. (2017). An automatic EEG based system for the recognition of math anxiety. In 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS) (pp. 409-412). IEEE. doi:10.1109/CBMS.2017.107 [
DOI:10.1109/CBMS.2017.107]
15. Li, J., Ran, H., & Zhao, J. (2019). Relationship Between Multiple Temporal Features of Resting EEG and the Anxiety State of Normal Subjects. In 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI) (pp. 1-6). IEEE. doi:10.1109/CISP-BMEI48845.2019.8965982 [
DOI:10.1109/CISP-BMEI48845.2019.8965982]
16. Liu, J., Li, J., Peng, W., Feng, M., & Luo, Y. (2019). EEG correlates of math anxiety during arithmetic problem solving: Implication for attention deficits. Neuroscience letters, 703, 191-197. doi:10.1016/j.neulet.2019.03.047 [
DOI:10.1016/j.neulet.2019.03.047]
17. Mohammadi, M. R., Khaleghi, A., Nasrabadi, A. M., Rafieivand, S., Begol, M., & Zarafshan, H. (2016). EEG classification of ADHD and normal children using non
18. linear features and neural network. Biomedical Engineering Letters, 6(2), 66-73. doi:10.1007/s13534-016-0218-2 [
DOI:10.1007/s13534-016-0218-2]
19. Paramanathan, P., & Uthayakumar, R. (2008). An algorithm for computing the fractal dimension of waveforms. Applied Mathematics and Computation, 195(2), 598-603. doi:10.1016/j.amc.2007.05.011 [
DOI:10.1016/j.amc.2007.05.011]
20. Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences, 88(6), 2297-2301. doi:10.1073/pnas.88.6.2297 [
DOI:10.1073/pnas.88.6.2297]
21. Shi, C. T. (2018). Signal pattern recognition based on fractal features and machine learning. Applied Sciences, 8(8), 1327. doi:10.3390/app8081327 [
DOI:10.3390/app8081327]
22. Sokolova, M., Japkowicz, N., & Szpakowicz, S. (2006). Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation. In Australasian joint conference on artificial intelligence (pp. 1015-1021). Springer, Berlin, Heidelberg. doi:10.1007/11941439_114 [
DOI:10.1007/11941439_114]
23. So, P., Barreto, E., & Hunt, B. R. (1999). Box-counting dimension without boxes: Computing D 0 from average expansion rates. Physical Review E, 60(1), 378. doi: 10.1103/PhysRevE.60.378 [
DOI:10.1103/PhysRevE.60.378]
24. Taheri, H., Taheri, A., & Amiri, M. (2017). Evaluation of the effectiveness of group behavioral activation therapy on social anxiety, avoidance and negative evaluations of people with social anxiety symptoms. Journal of Mental Health Principles, 19 (5), 361-365. doi:10.22038/JFMH.2017.9057 [Persian]
25. Taravat, A., Proud, S., Peronaci, S., Del Frate, F., & Oppelt, N. (2015). Multilayer perceptron neural networks model for meteosat second generation SEVIRI daytime cloud masking. Remote Sensing, 7(2), 1529-1539. doi:10.3390/rs70201529 [
DOI:10.3390/rs70201529]
26. Trambaiolli, L. R., & Biazoli, C. E. (2020). Resting-state global EEG connectivity predicts depression and anxiety severity. In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 3707-3710).IEEE. doi: 10.1109/EMBC44109.2020.9176161 [
DOI:10.1109/EMBC44109.2020.9176161]
27. Wang, S., Tang, J., & Liu, H. (2017). Feature Selection. doi:10.1007/978-1-4899-7502-7_101-1 [
DOI:10.1007/978-1-4899-7502-7_101-1]
28. Xie, Y., Yang, B., Lu, X., Zheng, M., Fan, C., Bi, X., & Li, Y. (2020). Anxiety and depression diagnosis method based on brain networks and convolutional neural networks. In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 1503-1506). IEEE. doi:10.1109/EMBC44109.2020.9176471 [
DOI:10.1109/EMBC44109.2020.9176471]
29. Zhao, Z., Anand, R., & Wang, M. (2019). Maximum relevance and minimum redundancy feature selection methods for a marketing machine learning platform. In 2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA) (pp. 442-452). IEEE. doi:10.1109/DSAA.2019.00059 [
DOI:10.1109/DSAA.2019.00059]